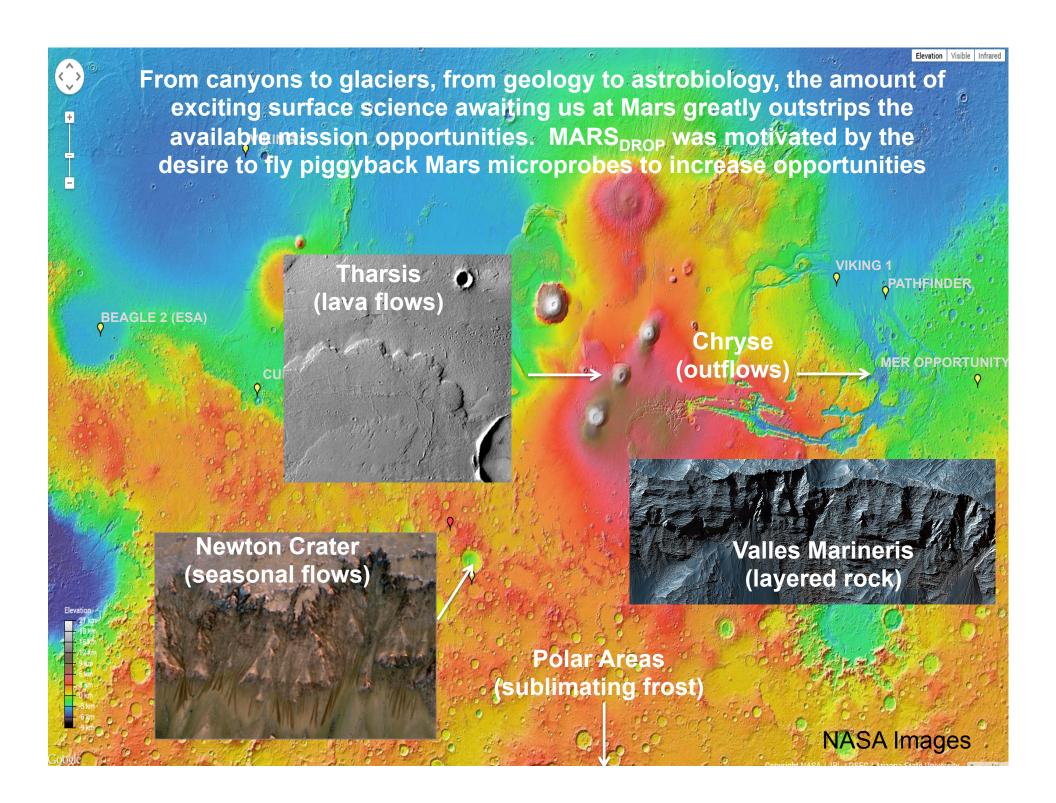


MARS_{DROP} Architecture:

MicroLanders to Enable Multiple Landings At Every Mars Opportunity

2014 November 21
Mars CubeSat/Nanosat Workshop
California Institute of Technology

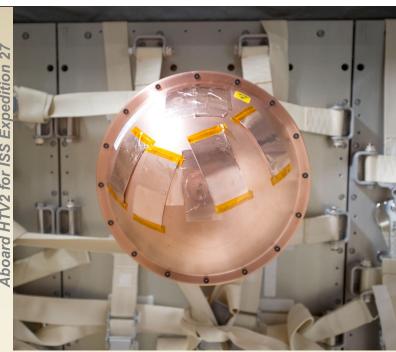
Robert L. Staehle/Jet Propulsion Laboratory-California Institute of Technology Matthew A. Eby/Aerospace Corp., Rebecca M. E. Williams/Planetary Science Institute Rohit Bhartia, Justin Boland/JPL-Caltech


Further example Payload Contributions from: Courtney Duncan, Travis Imken/JPL

Copyright 2014. All rights reserved.

Landing Architecture

Entry Interface 100 km, V=7km/sec



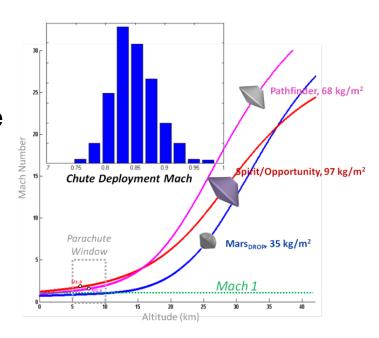
T+1 min, Max Q 35 km, 15 g's

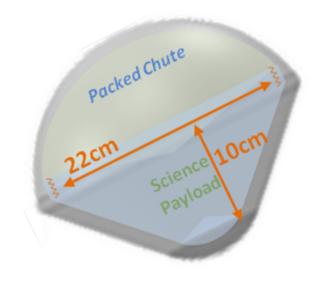
T+3 min, Backshell Sep. 6.5 km, Mach 0.85

Reentry Breakup Recorder
Aboard HTV2 for ISS Expedition 27

T+3 min, Main Deploy 6.5 km, 200m/sec

3-DOF Simulation (Range, Height, Orientation)

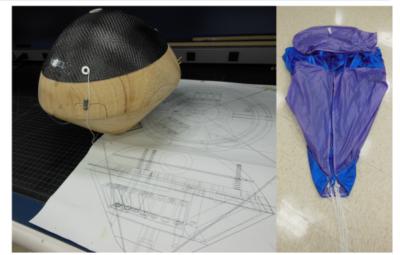



T+3 min, Peak Inflation Load 6.5 km, 65 g's

T+10 min, Terminal Landing 3.0 km, Vertical < 7.5 m/sec

Capability Summary

- Probe is largely inert ballast from the host standpoint, added burden of 10 kg per probe
- Probe shape derived from REBR/DSII, provides passive entry stability
- Entry mass limited by the need to provide a subsonic parachute deployment
 - 3-4 kg probe entry mass
 - Accommodates a ~1 kg science payload
- Packed chute preserves a significant portion of the volume for a landed payload
- Parawing is potentially steerable, opening the way for targeted landing
 - New missions enabled
- Inexpensive, \$20-50 million per mission
 - Encourages high risk destinations, such as canyons



Aerodynamic Decelerator Optimized for Volume, Scaled Down from a Gemini Parawing Design

Concepts:	Solid Circular Parachute	Disk-Gap-Band Parachute	Inflatable Decelerator	Vortex Ring Parachute	Parawing
Claim to Fame	"Standard" Round Solid Parachute	Used on all NASA Mars Landers	Targeted for future NASA Mars Landers	Highest Drag	Gliding Chute
Supersonic	No	Yes	Yes	Unreliable	No
Complexity	Low	Low	High	High (Swivel)	Medium
Prior Research	Extensive	Extensive	Moderate	Minimal	Moderate
Subsonic Drag	Moderate (C _D ~ 0.9)	Low (C _D ~ 0.6)	Moderate (C _D ~ 0.8)	Very High (C _D ~ 2.0)	Very Low ($C_D \sim$ 0.3), but Lift
Mass / Volume for 7.5m/s vertical velocity (reference V)	1.1 kg / 2300 cm ³	1.7 kg / 3480 cm ³	2.5 kg / 5200 cm ³	0.5 kg / 1050 cm ³	0.2 kg / 200 cm ³
Notes / Landing Site Limitations		Poor subsonic drag prompts two-stage deceleration	Is attractive for much larger vehicles	Suspect Reliability	Horizontal velocity -could be good or bad

Capsule

Capsule

Demonstration

Demonstration

Capsule

Capsule

115,000

114,000

500

mph

550

mph

410 Pa

(Overtest)

580 Pa

(Overtest)

No Damage

Minor Damage-

Wing Tip Line

Snapped

MARS_{DROP} 3

(Feb. 2014)

MARS_{DROP} 4

(May 2014)

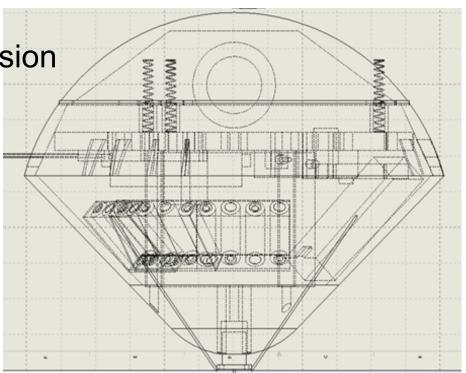
Capsule Oriented

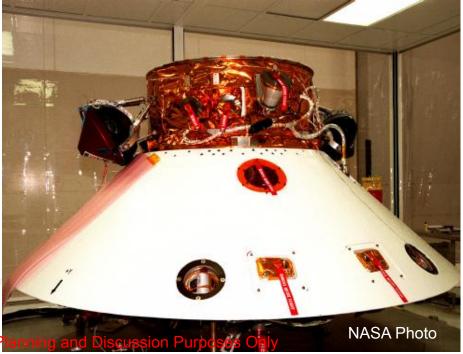
Backwards-Canopy

Successful Inflation &

Capsule-New Packing

Deployment from


Procedure Verified


Inverted at Deployment

Recovery Tracking
Beacon, Position & Telemetry
144.39 MHz & 430 MHz

A Technology Demonstration Mission

- A low cost demonstration mission could be mounted in the near future based largely on existing elements:
 - Cruise stage carrier brackets borrowed from Mars Polar Lander design.
 - Aeroshell derived from REBR/DSII.
 - Flight computer borrowed from Aerospace/JPL CubeSats.
 - Iris-based radio.
 - COTS imaging descent camera.
- Once demonstrated, several piggyback probes can go with each Mars-bound craft at minimal added cost & mass.
 - Instrument technology survey identified a wide range of plausible payloads.

Survey: A Variety of Plausible Instrumentation, Serving a Span of Science, Can Be Accommodated

Instrument Type			Max Dimension		Modifications Required	Measurements & Remarks	POC/JPL Org
	1	· ·	(mm) 🕞	ı .	·	l 🔻	
Video Camera Legacy still camera	74	600-1900	60 67	GoPro Hero3 MER/MSL Hazcam & Navcam	Rad tolerance; modify for external control Lander to provide input voltages and camera control	720p, 960p, 1080p video with 3 FOVs up to ~150 deg. 5, 7, 10 MP pictures with 3 - 10 fps. High heritage; scientific quality CCD still images up to every 5 sec. >20 units to Mars.	T. Imken/ T. Goodsall M. Walch
camera	220	213	U/	ria vodini	voltages and carriera control	images up to every 5 see. 725 units to mais.	Water
SmartCam	<100	< 1600	58	PIXHAWK	Low op temp, Rad tolerance.	Machine vision camera and processing to support glide-to-target guidance.	J. Boland
uSeismometer	200	100	30	JPL Microdevices		Performance comparable to conventional terrestrial seismometer.	R. Williams/PSI
Weather Monitor	≤1930	12,750 (peak)	140	REMS/MSL, Twins/InSIGHT	Adapt to the desired envelope.	Configuration is flexible and sensors can be added or subtracted/replaced + dust sensor via a dedicated camera	M. de la Torre Juarez
Aerosol Properties Sensor	630	4300 (peak)	70	REMS/MSL, Twins/InSIGHT	Adapt to the desired envelope.	(included above)	M. de la Torre Juarez
Multispectral Microscopic Imager VNIR	240	3000 (60 sec.)	67	MER-MI Rosetta ROLIS Phoenix RAC	Wider FOV	Infer mineral grain composition at <1 mm scale. Operates day (panchromatic) or night (multispectral 0.4 to 1.0 microns).	R. Glenn Sellar
Multispectral Microscopic Imager VSWIR	150	9000 (5 mins)	110	MMI Mars 2020 proposal	Wider FOV ~ 30 x 30 cm. Consider COTS InGaAs camera	Infer mineral grain composition at <1 mm scale. Passively-cooled HgCdTe - operates at night (multispectral 0.45 to 2.45 microns).	R. Glenn Sellar
Deep UV Fluorescence Imager	700	3000 (peak)	150	Lab demo	Communication/power from vehicle.	Organic detection. Small UV light sources dependent on current DARPA efforts.	R. Bhartia
Deep UV Fluorescence / Raman Imager	3000	15000 (peak)	250	SHERLOC/ Mars 2020	Reduce mass, comm/power from vehicle	Organic detection, astrobiological-relevant minerals, Ops short burst laser source high TRL.	R. Bhartia
Iris 2+ Transponder	700	12,000 (xmit)	100	Iris on INSPIRE Cubesat	Reduce mass (perhaps UHF-only), cold temp	Data downlink 8 kbps X-band direct to DSN 70 m at 1 AU; higher rates by UHF to Mars orbiting relay assets.	C. Duncan

Example Camera System with Computation for Terrain Relative Navigation

Gumstix module (left) mounted on a programming board and connected via flex cable to a 1 MP Aptina MT9V032-based camera with M12 lens (right).

The TI AM3703 DSP could run a modified version of the Mars2020 <u>Lander Vision System</u> to provide Terrain Relative Navigation better than 1 meter

knowledge at landing.

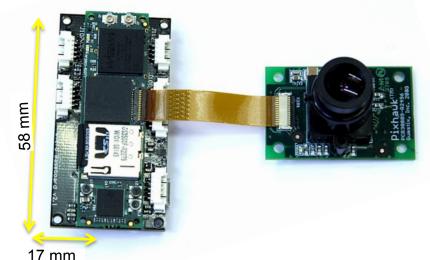


image source: https://pixhawk.ethz.ch/electronics/camera

- · Modifications likely required:
 - Materials compatibility.
 - Modest rad tolerance (<~10 krad).
 - Thermal tolerance or heater.
 - Different pressure sensor?

Parameter	Specification		
Mass, Power, Volume	33 g, 475 mW, < 6 cc		
FOV, iFOV, pixels	48°, 1 milliradian, 1 MP		
framerate	60 fps		
lens	4-element glass, f/4, 6 mm		
Computation	TI AM3703 DSP with 1GHz ARM CORTEX A8		
IMU input for Lander Vision System	MEMS Altimeter & 3- axis MEMS accelerometer		

(POC: Justin Boland, Justin.S.Boland@jpl.nasa.gov)

Terrain Relative Navigation Concept Operations

- 1. Before launch, identify regions of high science return in existing Mars imagery.
- 2. At T+3 minutes, turn on camera and take image.
- 3. Compare to known imagery of Mars scaled for altitude and camera resolution to perform first rough location.
- 4. Take images at 1 frame per second, combine with attitude knowledge to improve location, velocity and attitude knowledge. Infer local winds.
- 5. Continuously calculate controllable landing area and steer towards closest, previously identified high science or use texture algorithms to look for high contrast areas.
- 6. Use optical flow algorithm to verify ground speed and improve altitude knowledge.
- 7. Flared landing with terrain knowledge better than 1 meter.

Image: HiRISE ESP 038020 1510, 51.3 cm/pixel

Example Instrument: Deep UV Fluorescence

Trace Organics/Biosignature Detection

- Deep UV (excitation <250 nm) spectroscopy is an active spectroscopic method that *enables* detection and characterization of organics and astrobiologically relevant minerals.
- Integrated visible imaging CCD context camera.
- NASA- & DARPA-supported development >15 yrs.
- ~700 g, <15W for Fluorescence *imaging*-only.

Deep UV laser induced native fluorescence

- Enables detection and differentiation of organics
 - both abiotic and biotic organics
 - Organics in meteorites (wide range of thermal maturity), and potential biosignatures.
- Maps/images organic distribution over 1cm²
- Sensitivity at ppb.

Deep UV resonance Raman

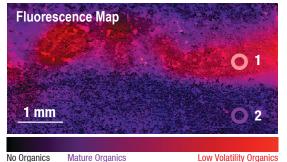
- Enables detection and characterization of a wider range of organics relevant to biosignatures and alteration processes.
- Presently too large for MarsDrop microlander capability.

Current Status

- Mars 2020 SHERLOC instrument under development;
- · 3+ kg.; miniaturizing in progress
- TRL advancements for next generation sub-250 nm deep UV AlGaN sources to be developed to reduce overall size to <1kg

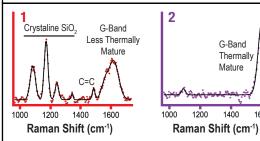
(POC: Roh Bhartia <u>rbhartia@jpl.nasa.gov/</u> Luther Beegle, <u>lbeegle@jpl.nasa.gov</u>)

Deep UV Fluorescence/Raman Instr.



SHERLOC-Mars 2020 Prototype

Example Data Product



Macroscopic Image

DUV Fluor:

Organic
Detection,
Classification,
& Distribution

DUV Raman:

Organic analysis & mineralogy

Summary

- Double or triple the number of Mars landers at small additional cost for each mission opportunity.
- Target high-risk locations, including canyons and crater walls.
- Distributed science from multiple sites simultaneously.
- Allow heavy university and small business involvement, at a level just now starting with beyond-Earth CubeSats.

Contact: <u>robert.l.staehle@jpl.nasa.gov</u> 818 354-1176

Prior MarsDrop References

- 1. Matthew A. Eby, "MarsDrop," Second Interplanetary CubeSat Workshop, Ithaca, NY 2013 May 25.
- 2. Robert L. Staehle, Matthew A. Eby, Rebecca M. E. Williams, Kenneth Williford, Manuel de la Torre Juarez, "MarsDrop Architecture: Landing Microprobes at Exciting Sites on Mars," conference paper for 65th International Astronautical Congress, Toronto, Canada 2014 October 3.
- 3. Robert L. Staehle, Matthew A. Eby, Rebecca M. E. Williams, Kenneth Williford, Manuel de la Torre Juarez, Rohit Bhartia, Justin Boland, Courtney Duncan, Travis Imken, "MarsDrop Architecture: Landing Microprobes at Exciting Sites on Mars," presentation at 65th International Astronautical Congress, Toronto, Canada 2014 October 3.
- 4. Frank Morring, Jr., "Getting Down: Parawings could land piggyback microprobes on Mars," *Aviation Week & Space Technology*, 2014 October 20.

Additional Information

Backup Slides

Developing a Landing Architecture for a Planetary Microprobe

Objectives/Motivation

The ability to land a small scientific package on Mars could unleash a wave of exciting exploration missions. Science on a global scale, at low cost, allowing for bold mission ideas that will augment and complement the flagship Mars programs.

Aerospace & JPL have flown 20 small satellites over the past 15 years, including reentry probes (REBR). The addition of a landing system to our reentry probes creates a new route for planetary research. The min, Max (1988) and the state of the state of

Project aims to architect & demonstrate a proof-of-concept landing system for a Mars microprobe, while preserving sufficient volume for a useful scientific payload.

Mars Microprobe Landing Architecture:

- Small hitchhiker payload riding with a host craft to Mars
- Aeroshell based on the REBR form factor, stability on entry
- Subsonic deployment of a lifting parawing low sink rate
- Sized to land a miniature (3kg) probe at the highlands

Approach

High altitude drop testing using weather balloons provides unmatched test fidelity for demonstrating the landing design.

100,000 feet above Earth is a Martian Atmosphere:

- It's quite cold (-50°C)
- It's a near vacuum (99%)
- High velocity, subsonic flow

Test in stages:

- Launch, tracking, & recoveryParawing deployment
- Backshell separation
- •Full proof-of-concept demo

Collaborate with community to transition to mission proposals.

Significant Results

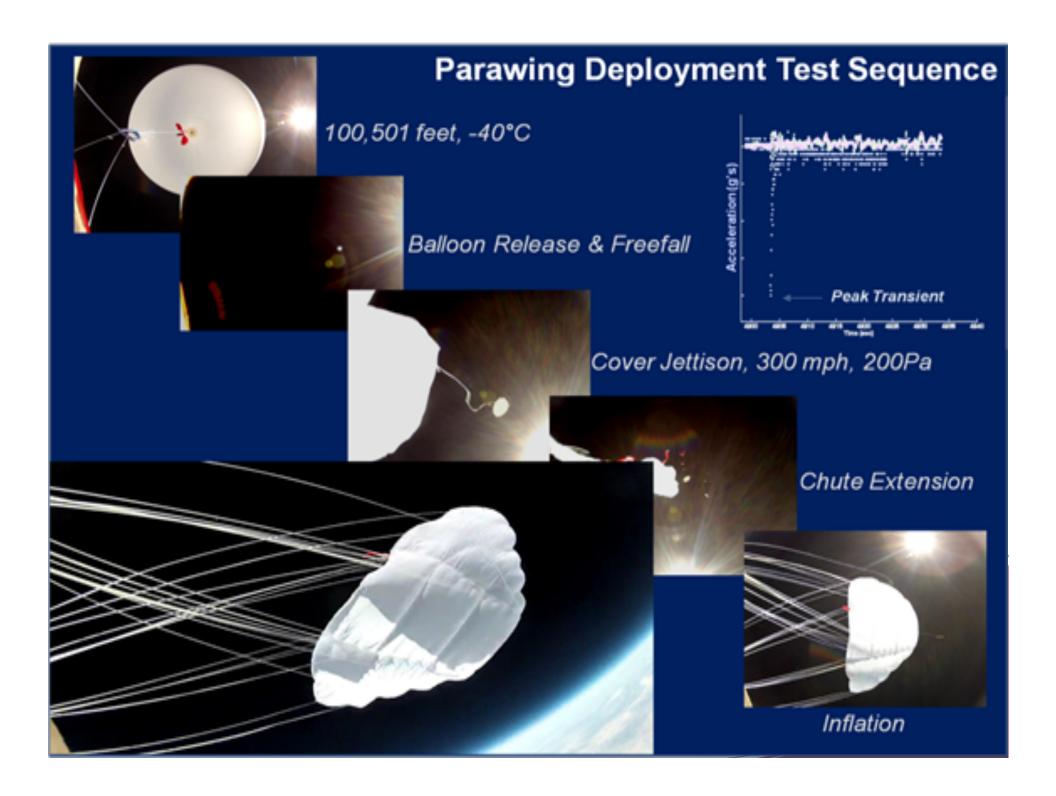
Internal research results...

- Detailed trade study defined a viable landing approach
- Technical interchanges amongst the technical community broader community at JPL to define potential missions
- Developed the ability to carry out high altitude tests, a useful capability that can benefit other projects
- Test and demonstration phase over several flights

Impact

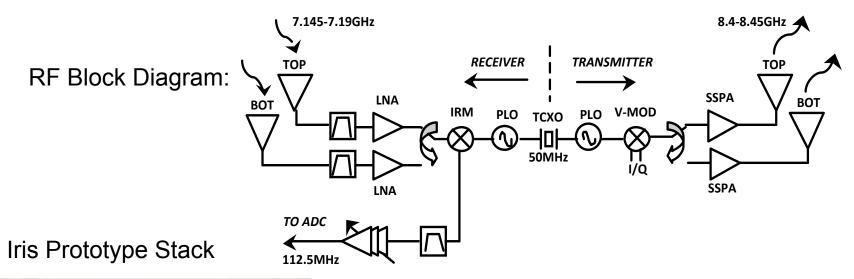
Landing architecture will pave the way for discussing new missions with planetary scientists:

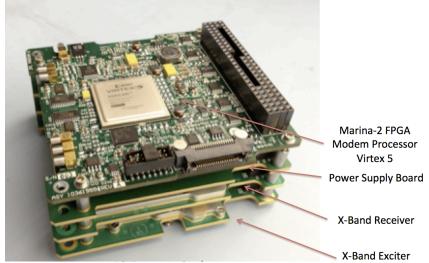
- · Missions to the never before visited highlands of Mars
- Bold high risk destinations, including the great canyons of Mars
- Atmospheric flyovers using long duration glides
- Distributed science simultaneously at multiple locations


Lunar Lake Test Site

Summary/Bottom Line

A bold approach towards Mars exploration that seeks to enable new science on a global scale:


- Aiming for the first successful Mars microprobe lander
 And the first flying vehicle on another planet
 - And the cheapest Mars vehicle


T+10 min, Flying a 20°Glideslope

Example Payload: Iris X-band Transponder

~10 x 10 x 5 cm, <0.5 kg + antenna (less if UHF-only)

All functions and PLOs under FPGA control All signal processing at baseband in FPGA

- generation of transmit I/Q
- processing of 112.5 MHz receive IF

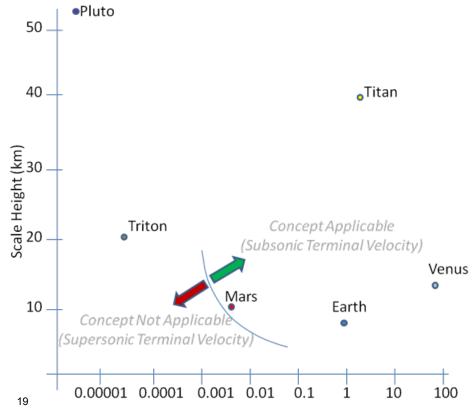
POC = Courtney Duncan/JPL courtney.b.duncan@jpl.nasa.gov

Source: http://shop.gopro.com/cameras/ nero3plus-silver-edition/CHDHN-302-

Example Instrument: Could we use a Go Pro Camera at Mars?

- COTS* Imaging solution for Mars?
 - <2 W during imaging</p>
 - <150 g in default configuration, including housing
 - ~60 mm wide

- f/2.8 lens with diagonal FoV configurable to be 115 or 150 deg
- Spatial resolution during descent
 - Spatial resolution (not counting smear) in the 5MP (2560x1920px) mode. 5MP was baselined because it is the smallest file size generated by the GoPro:
- Modifications likely required:
 - Materials compatibility.
 - Modest rad tolerance (<~10 krad).
 - Thermal tolerance or heater.
 - Voltage & data interface tbd.


Slant Range	Spatial resolution
15km	12m
10km	9m
5km	4m
1km	0.8m
100m	8cm
10m	8mm

(POC: Travis Imken: Travis.Imken@jpl.nasa.gov)

^{*}COTS = Commercial Off-the-Shelf

Beyond Mars

- Concept equally applicable to planetary atmospheres thicker than Mars: Earth, Titan, Venus
 - Titan, in particular, has a variety of terrain, lakes, and potentially rivers; ability to send multiple probes to different sites is attractive.

